Why Polymer Coated Paclitaxel Stents Insight from Clinical Trials

Seung-Jung Park, MD, PhD, FACC Professor of Internal Medicine Asan Medical Center, University of Ulsan, Seoul, Korea

Why Paclitaxel ?

- Stable and potent at nanomolar concentrations
 Multifunctional
 - (Anti-inflammatory, -proliferative, -migratory,
 - secretory,- extracellular matrix)
- Hydrophobic/liphophilic
- Large doses can be loaded in polymers
- Can be applied to metal as a durable simple coating, without need for a polymer
- Extensive human experiences

Paclitaxel inhibits cell processes dependent on microtubule turnover including mitosis, cell proliferation and cell migration while the cells remain viable (cytostatic).

Dose Dependent Mitotic Arrest

Flow cytometry (mitotic index)

Microscopy (round, detached cells)

DAPI stain (fragmented nuclei, mitotic arrest)

Giannakakou P et al. Oncogene 2001;20:3806-3813

Cardiovascular Research Foundation

Dose Dependent Inhibition of Intimal Hyperplasia

Uncoated

Chondroitin Sulfate Gelatin Coated

1.5 µg

42 µg

Farb A et al. Circ 2001;104:473 **ANGIOPLASTY SUMMIT**

CVRF Cardiovascular Research Foundation

by high drug concentration (42 ug/stent) of paclitaxel Toxicity

Intimal fibrin deposition

Medial necrosis Hemorrhage

Focal intimal acute and chronic inflammatory cell

Farb A et al. Circ 2001;104:473

CVRF Cardiovascular Research Foundation

ANGIOPLASTY SUMN

Dose Dependent Cellular Effect

Cardiovascular Research Foundation

Impact of Anti-restenotic action

IC50 : drug concentration to kill 50% in in-vitro cell culture

Paclitaxel has a good vascular compatibility

Complete healing, re-endothelization, minimal inflammation...

CVRF Cardiovascular Research Foundation

Experimental data (One month Swine study)

Paclitaxel coated stents produce significant inhibition of neointimal hyperplasia

COURF Cardiovascular Research Foundation

Non-Polymer Coating Stent

Dose Rating Clinical Studies ASPECT / ELUTE

Supra-G stent Three Component System

Device

Paclitaxel coated stent

 Paclitaxel was adhered to the abluminal surface of stents using a proprietary process without the use of a polymer

Dose-Ranging Studies

ASPECT: (Asia) Randomized, Controlled, Triple-Blinded Supra GTM 316L SS Coronary Stent Diameter: 2.5, 3.0, 3.5 mm Length: 15 mm PTX Doses: 0.0/ 1.3/ 3.1 (µg/mm²)

ELUTES: (Europe)

Randomized,Controlled, Triple-BlindedV-Flex PlusTM316L SS Coronary StentDiameter:3.0, 3.5 mmLength:16 mmPTX Doses: $0.0/0.2/0.7/1.4/2.7 (\mu g/mm^2)$

Comparison of Paclitaxel Dose

Paclitaxel Dose Density (μ g/mm²)

Dose-Ranging Studies

ASPECT: 3 investigative sites / 177 pts enrolled Plavix for 1 month or 6 months (Asia)

Primary follow-up:

Ongoing follow-up:

(37 pts cilostazol) MACE at 1 & 6 months Angiographic at 6 months IVUS subset at 6 months Clinical every year

ELUTES: (Europe)

9 investigative sites / 192 pts enrolled Plavix for 3 months Primary follow-up: MACE at 1 & 6 months Angiographic at 6 months Clinical every year Ongoing follow-up:

Demographics

	ASPECT	ELUTES
Age (years)	60 ±10	60 ±11
Male	76%	82%
Diabetic	20%	16%
Hypercholesterolemia	13%	49%
Hypertension	47%	46%
Smokers	59%	64%
Multiple Vessel Disease	40%	43%

Lesion Characteristics

		ASPECT	ELUTES
Classification	Type B1	40%	64%
	Type B2	6%	8%
Tortuosity	Mild	37%	45%
	Moderate	3%	6%
Calcification	Mild	14%	38%
	Moderate	3%	5%
Eccentric		55%	51%
Angulation >45 degrees		1%	6%

Baseline QCA

PTX Dose (µg/mm²) Lesion Length (mm) RVD (mm) MLD pre (mm)

ASPI	EL	
<u>3.1</u>	<u>0.0</u>	<u>2.7</u>
10.9	10.5	11.1
2.94	2.88	2.95
0.64	0.54	0.56

UTES

0.0

10.9

2.99

0.53

Cordiovascular Research Foundation

% Diameter Stenosis 6-Month QCA Results:

ASPECT

Dose Density (μ g/mm²)

Dose Density (μ g/mm²)

% Diameter Stenosis -Dose response 6-Month QCA Results:

Binary Restenosis -Dose response

6-Month QCA Results:

Late Loss

6-Month QCA Results: ASPECT ELUTES

Lesion Length 6-Month QCA Results

Safety: ELUTES Study

	1-Month		6-Month		12-Month	
PTX Dose:	<u>2.7</u>	<u>0.0</u>	<u>2.7</u>	<u>0.0</u>	<u>2.7</u>	<u>0.0</u>
n:	37	38	37	38	37	38
Death	1	0	1	0	1	0
QMI	0	0	0	0	0	0
CABG	0	0	0	0	0	1
SAT	1	1	1	1	1	1
Non-Q MI	1	0	1	0	1	0
PCI	0	0	1	4	2	5
SAE	3 (8%)	1	4 (11%)	5 (13%)	5 (13%)	7 (18%)
		(3%)				

Cardiovascular Research Foundation

Safety: ASPECT Study

	1-Month		6-Month		12-Month	
PTX Dose:	<u>3.1</u>	<u>0.0</u>	<u>3.1</u>	<u>0.0</u>	<u>3.1</u>	<u>0.0</u>
n:	48	49	48	49	48	49
Death	0	0	0	0	0	0
QMI	0	0	0	0	0	0
CABG	0	0	0	0	0	0
SAT	0	0	0	0	0	0
Non-Q MI	1	0	1	0	1	0
PCI	0	0	1	2	4	5
SAE	1 (2%)	0 (0%)	2 (4%)	2 (4%)	5 (10%)	5 (10%)

12-Month TLR-free Survival ASA+Ticlid/Plavix

Cardiovascular Research Foundation

12-Month TLR-free Survival ASA+Cilostazol

Cardiovascular Research Foundation

PATENCY The Cook Logic PTX stent (n=50)

 Coating applied to abluminal surface using Cook's proprietary surface modification technology

•2.0 ug/mm2 (nominal)

9-month Angiographic Data

Cardiovascular Research Foundation

Non-Polymer Coating Stent

Dose Rating Clinical Studies ASPECT / ELUTE

Lessons from Experimental and Clinical studies

Nonpolymer Coating Paclitaxel Eluting Stent

A paclitaxel eluting stent suppresses neointimal formation in a dose-dependent manner. However, a higher dose of paclitaxel is likely to be associated with delayed healing and local toxicity.

The ASPECT, ELUTE, and PATENCY trials support the concept that an optimal dose density is essential for a sufficient restenosis-reducing effect.

Lessons from Experimental and Clinical studies

Nonpolymer Coating Paclitaxel Eluting Stent

The high dose density (3 mcg/mm²) paclitaxel coating was the most effective in reducing restenosis.

• The paclitaxel effect is maintained at 12 months

Polymer Coating Stent

TAXUS stent Three Component System

De novo, 3.0 and 3.5 mm, <12 mm 532 pts at 61 sites in 19 countries 1:1 Randomization Enrollment completed, results at TCT 2002

TAXUS-III: Feasibility study Coated stent for ISR lesions 30 pts at 2 sites

De novo 10-28 mm lesions 1,172 pts at 80 U.S. sites 1:1 Randomization with single stent 2.5, 3.0, 3.5 mm Express (16, 24, 32 mm) Enrollment to begin 1st quarter 2002

De novo 10-48 mm lesions 1,110 pts at 80 sites 1:1 Randomization, multiple stents allowed 2.5, 3.0, 3.5 mm Express (8, 16, 24, 32 mm) Enrollment anticipated 3rd quarter 2002

TAXUS-VI: European arm

ISR, 10-40 mm lesions
528 pts at up to 60 US sites
1:1 vs. brachytherapy
2.5, 3.0, 3.5 mm Express (8, 16, 24, 32 mm)
Enrollment anticipated 3rd quarter 2002

MACE over Time

Sustained benefit of TAXUS SR over 2 years

Slow Release : 6-Month Restenosis

No difference at edges between TAXUS and control

TCT, Oct 2002

Moderate Release : 6-Month Restenosis

Control TAXUS MR

No difference at edges between TAXUS and control

TCT, Oct 2002 ANGIOPLASTY SUMMIT

Cordiovascular Research Foundation

6-Month MACE						
	Combined Control (n=270) Rate % / (n)	TAXUS ^{NIRx} SR (n=131) Rate % / (n)	TAXUS ^{NIRx} MR (n=135) Rate %/ (n)	P-value SR vs. Control	P-value MR vs. Control	P-value overall
Stent thrombosis	0	1		-1.0000-	1.0000	1.0000
6-Month MACE	19.8 (52)	8.5 (11)	7.8 (10)	0.0035	0.0019	0.0007
Death	0.4 (1)	0.0	0.0	1.0000	1.0000	1.000
Q-Wave MI	0.8 (2)	0.0	0.0	1.0000	1.0000	1.000
Non Q-Wave MI	4.6 (12)	1.5 (2)	2.3 (3)	0.1567	0.4029	0.2692
TVR - Overall	16.0 (42)	7.7 (10)	6.2 (8)	0.0262	0.0059	0.0053
TLR	13.3 (35)	4.6 (6)	3.1 (4)	0.0080	0.0010	0.0005
TVR Remote	2.7 (7)	3.1 (4)	2.3 (3)	0.7572	1.0000	0.9406
CABG	0.8 (2)	0.8 (1)	1.0 (1)	1.0000	1.0000	1.0000
					TCT,	Oct 2002

12-Month MACE							
		Combined Control (n=270) Rate % / (n)	TAXUS ^{NIRx} SR (n=131) Rate % / (n)	TAXUS ^{NIRx} MR (n=135) Rate %/ (n)	P-value <mark>SR</mark> vs. Control	P-value MR vs. Control	P-value overall
	Stent	0	1		0.3267	0.3333	0.2458
12	-Month MACE	21.7 (57)	10.9 (14)	9.9 (13)	0.0082	0.0048	0.0023
	Death	0.8 (2)	0.0	0.0	1.0000	1.0000	1.000
	Q-Wave MI	1.1 (3)	0.8 (1)	1.5 (2)	1.0000	1.0000	1.000
	Non Q-Wave MI	4.2 (11)	1.6 (2)	2.3 (3)	0.2354	0.4026	0.3552
	TVR - Overall	17.5 (46)	10.1 (13)	6.9 (9)	0.0704	0.0034	0.0069
7	TLR	14.4 (38)	4.7 (6)	3.8 (5)	0.0035	0.0010	0.0003
	TVR Remote	3.0 (8)	3.1 (4)	1.5 (2)	1.0000	0.5069	0.7279
	CABG	1.1 (3)	3.1 (4)	1.5 (2)	0.2244	1.0000	0.3716
						Euro	PCR. 2003

TAXUS II trial 12-Month MACE Free Survival

Days after randomization

Sustained benefit of TAXUS stents from 6 to 12 months

- Clopidogrel and aspirin for 6 months
- Clinical F/U at 1,3,6, and 9 months and annually
- Angiographic F/U (n=446) at 9 months
- IVUS substudy (n=171) F/U at 9 months

TAXUS VI 30-Day MACE

	MR TAXUS (n=350)	Control (n=309)	Р
Stent thrombosis (%)	1 (0.4)	0 (0.0)	1.000
30-Day MACE	5.3	7.3	0.379
Cardiac death (%)	1 (0.4)	0 (0.0)	1.000
Overall MI (%)	9 (4.0)	16 (7.3)	0.125
Q-MI (%)	2 (0.9)	2 (0.9)	1.000
Non-Q MI (%)	7 (3.1)	14 (6,4)	0.099
TVR (%)	3 (1.3)	1 (0.5)	0.624

WISDOM Registry

Real world

9 countries, 26 sites Real world safety data on the TAXUS EXPRESS Slow Release Stent System

529 patients from June 2002 to May 2003

- Diabetes mellitus :32%
- AMI : 10%
- Average lesion length : $15.0 \pm 6.5 \text{ mm}$
- Average RVD : $2.9 \pm 0.6 \text{ mm}$
- No of stents per pts : 1.23

Feasibility and Efficacy

Polymer Coating Paclitaxel Eluting Stent

- TAXUS I study demonstrated that polymer coated paclitaxel eluting stent is safe and feasible.
- TAXUS studies showed that polymer coated paclitaxel eluting stent has a dramatic effectiveness for inhibition of intimal hyperplasia compared to bare metal stent.
- Moreover its role was maintained for 2 years.

Safety and Efficacy by Experimental Studies

Paclitaxel should be OK !

Why could not demonstrate the same efficacy of the Non-polymer Paclitaxel eluting stents in DELIVER ?

By chance or inevitable ?

Cardiovascular Research Foundation

The Guidant ACHIEVE stent

 Coating applied to abluminal surface using Cook's proprietary surface modification technology

• 3.0 ug/mm2 (nominal)

Study Design

Prospective, randomized, single-blinded, parallel-group (two-arm), multi-center clinical trial

Inclusion Criteria

- Target vessel RVD 2.5 4.0 mm
- Target lesion length $\leq 25 \text{ mm}$ visually estimated
- Up to two native vessels treated, one target and one non-target, with only one *de novo* lesion per vessel
- Target lesion %DS ≥50 and <100, and TIMI flow ≥1

DELIVER : 30-Day MACE

Death Q-MI Non Q-MI TLR-CABG

DELIVER : 9-Month Death, MI

Death Q-MI Non Q-MI

DELIVER : Restenosis Rate

The complete data was not presented yet. However, It was reported that major clinical and angiographical end point were not met as powered.

1. The drug paclitaxel and its concentration

1. The drug paclitaxel and its concentration It should be OK

CVRF Cardiovascular Research Foundation

The drug paclitaxel and its concentration
 The stent and delivery system

Optimal Stent Design For Even Distribution of Drug

Open diamond design

Closed cell design

Corrugated ring cell design

Uneven distribution With curved links

Even distribution With curved links

Comparison of Stents

Closed cell design

Bx Velocity Sirolimus Eluting stent

Corrugated ring cell design

Supra G, V Flex Non-polymer Paclitaxel stent **PENTA** Non-polymer Paclitaxel stent

Comparison of Stents

	PENTA	BX Velocity
	3.0x18mm	3.0x18mm
Unsupported Surface Area	3.85mm ²	3.29mm ²
Metal:Artery	14.16%	13.32%
Max. Circular USA	0.930mm ²	1.290mm ²

3.5x28mm PENTA

3.5x28mm BX Velocity **Diameter of Curvature: 15.33mm**

Cordiovascular Research Foundation

Balloon Injury in Both Edges

Stent To Shoulder Distance

Mean Distal STS = 1.333mm

Mean Distal STS = 0.555mm

Less edge balloon injury...

CVRF Cardiovascular Research Foundation

1. The drug paclitaxel and its concentration 2. The stent and delivery system

It should be OK

CVRF Cardiovascular Research Foundation

We may speculate reasons why ...

 The drug paclitaxel and its concentration
 The stent and delivery system
 The manufacturing of drug coating and the release kinetics

Why Polymer coating?

 Consistent dosing
 Controlled release kinetics
 Structural integrity

Why Polymer coating?

Reproducible release over time

From TAXUS trial

1.0 ug/mm², slow release 3 different lengths

Why Non-Polymer Coating?

Less complex Less expensive

Polymer coating leads to ... Initiation of tissue reaction **Cracking and Embolization**

CVRF Cardiovascular Research Foundation
However,

Non-polymer coating leads to ..

Up to 40% drug loss on expansion without a "carrier" in bench testing

Boston Scientific Polymer Coated stent *In vivo* Paclitaxel Elution

Crdiovascular Research Foundation

Vascular Inflammation

Fast release vs. Slow release

Fast release

Slow release

Cardiovascular Research Foundation

Non-Polymer SUPRA G stent (Cook)

In vivo Paclitaxel Elution

Faster Release ?

DELIVER

We may speculate reasons why ...

 The drug paclitaxel and its concentration
 The stent and delivery system
 The manufacturing of drug coating and the release kinetics

Doubtful,

DELIVER

Doubtful...

- 1. Non-polymer surface modification technique simplifies the manufacturing of the drug coated stent, whereas it is difficult to guarantee the controlled release of paclitaxel.
- 2. Based on the *in vivo* release kinetics, the Cook non-polymer surface modification technique might release the paclitaxel faster than the polymer coated stents.

DELIVER

Doubtful...

- Clinical studies about non-polymer paclitaxel eluting stent have a substantially different dose, delivery system and pharmacokinetic profiles. As a result, the diversity may lead to different outcomes.
- 4. Determinant of the right dose drug concentration for coating might be required for expected clinical outcomes.

Why Polymer?

Polymer coating

Surface modification

Potential Advantages Consistent dosing Controlled release

Less complex Less expensive

Potential Disadvantages

 Difficulties with loading, sterilization, and expansion Inflammatory responses

Drug retention and uniformity Consistent release kinetics

Efficacy of Paclitaxel Coated Stents

• Non-polymer coated stent ... DELIVER trial give us doubt.

 Polymer coated stent.... TAXUS trials give us trust.

Taxus vs. Cypher
Which stent would be better ?

Taxus vs. Cypher Which stent would be better?

Cardiovascular Research Foundation

Cardiovascular Research Foundation

Taxus vs. Cypher Which stent would be better ?

Based on Current data base

No clear Difference...

Taxus vs. Cypher Then, Which will be the winner?

Preoccupation of Cypher in the market, *depending on* the management skill of BSC
Price, *depending on* the policy of each company
Stent design, *depending on* lesion characteristics
Doctor's preference,

depending on sponsorship...^-